Placental calcifications after coronavirus disease 2019 in first trimester of pregnancy: ultrasound and pathology findings

Insaf Kouba¹, Luis A. Bracero¹, Karmaine Millington², Matthew J. Blitz¹

¹Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Donald, and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, ²Department of Pathology, The Woman’s Hospital of Texas, Houston, Texas, USA

Introduction

The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on placental tissue has been studied since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. Some authors have reported markers of maternal vascular malperfusion (MVM) in placentas of patients with COVID-19, including increased fibrin deposition, villous agglutination, intervillous thrombi, atherosis, and increased syncytial knotting [1,2]. However, these findings can also be seen in the absence of maternal infection, and studies have not identified specific histologic changes in placentas from patients with COVID-19 [3]. There are few reports of placental ultrasound findings in pregnancies complicated by COVID-19 [4,5].

We present a case of COVID-19 in early pregnancy in which placental calcifications were identified on second trimester ultrasound and confirmed on placental pathology evaluation.

Case report

A 40-year-old, non-Hispanic white, obese, multigravida developed nausea, vomiting, headache, and fever at 11 weeks of gestation. She denied cough, body aches, fatigue, loss of smell or taste, sore throat, shortness of breath, or lower gastrointestinal symptoms. She was positive for SARS-CoV-2 on polymerase chain reaction (PCR) testing. She had an initial dating ultrasound at 8 weeks 5 days and an ultrasound for nuchal translucency at 13 weeks, which revealed a homogeneous placenta with normal echotexture (fig 1a). The standard prenatal laboratory test results were normal. A non-invasive prenatal genetic screening test reported a low risk for fetal aneuploidy. The patient is Rhesus positive, immune to hepatitis B, Rubella, Measles, Varicella, and Mumps. Serological testing for cytomegalovirus, Parvovirus B19, toxoplasmosis, hepatitis C, and human immunodeficiency virus were negative. She was taking prenatal vitamins and no other medications. Her past medical history was significant for having a pelvic kidney. She denied smoking, alcohol, or drug use.

She underwent a detailed anatomy scan at 20 weeks of gestation, which revealed a male fetus in breech pres-
entation, normal anatomy, normal amniotic fluid, and a low-lying placenta with areas of echogenic foci (fig 1b). A third trimester ultrasound showed an appropriately grown fetus, and the placenta was no longer low lying. The placenta however, showed diffuse echogenic foci (fig 1c). She had follow-up imaging for fetal growth and weekly biophysical profile (BPP) assessments starting at 36 weeks. The placential images continued to demonstrate diffuse echogenic foci (fig 1d). The fetal growth remained appropriate during the pregnancy and the BPP scores were reassuring.

She had an elective induction of labor at 39 weeks of gestation. She had an uncomplicated vaginal birth of a male infant weighing 4,045 grams with APGAR scores of 9 and 9 at 1 and 5 minutes. The umbilical artery blood gas was within normal limits: (pH 7.21 / pCO$_2$ 62.9 mmHg/ pO$_2$ 17.1 mm Hg / HCO$_3$ 19 mmol/L). The estimated blood loss was 350 mL.

The placenta weighed 598 grams, which was at the 75-90th percentile for gestational age, and a three-vessel umbilical cord was noted. It was 75% circumvallate with the ridge measuring 2 cm from the disc ridge. The membrane was complete, pink tan, and opaque. The maternal surface of the placenta showed complete cotyledons. The parenchyma was dark red and spongy with a 0.7 cm luminal space lined by pink-tan soft tissue containing mucoid material (fig 2a). Histologic assessment showed findings of mature villi, chorangiosis, focal distal villous hypoplasia, intramural fibrin deposition in subchorionic stem vessels, and excessive calcifications (fig 2b). These calcifications were found in all regions of the disc, from the chorial plate to the basal plate. Most of these calcifications were found in the stem vessels with few focally present in an aggregate of trophoblast deep in the chorionic plate. There were no viral cytopathic effects, microorganism, villitis, or excessive fibrin associated with these calcifications. The placential tissue was not tested for SARS-CoV-2. The neonate had an unremarkable hospital course. He was not tested for SARS-CoV-2 and was discharged with the mother on day 2 of life.

Discussion

We report the ultrasound finding of placental echogenic foci in a pregnancy with mild COVID-19 during the first trimester. These echogenic foci were confirmed as placental calcifications on histologic assessment. Placental calcifications are calcium hydroxyapatite and phosphorous crystals, which are observed in late and post-term pregnancies, placentas of smokers, patients with hypertensive disorders of pregnancy, diabetes, and infections [6]. They have been reported in pregnancies complicated by viral infections such as Rubella, Varicella, Parvovirus B19, Herpes simplex, Zika, and Cytomegalovirus [7]. The significance of placental calcifications in the absence of viral infections is still debated. Some studies have shown that calcifications are associated with hypertensive disorders of pregnancy and adverse fetal outcomes [8]. Other studies have reported that calcifications are a sign of placental maturity but do not increase the risk for adverse fetal or neonatal outcomes [9].

In one case report of mild COVID-19 in pregnancy, a complaint of decreased fetal movement prompted a 29-week ultrasound which demonstrated oligohydramnios, absent end-diastolic velocity on umbilical artery Dop-
pler, and placental calcifications which were described
as comma-like densities and indentations corresponding
to Grannum grade 2-3 [5]. The patient had a cesarean
delivery due to reduced fetal heart rate variability. Placental
histology evaluation revealed intervillous fibrin deposi-
tion with ischemic necrosis of villi and histiocytic inter-
villoitis with no mention of calcifications. Another re-
port by Bouachba et al described placentas from 3 cases
of fetal death and 2 very preterm deliveries from patients
with COVID-19 [4]. The adverse pregnancy outcomes
were attributed to massive perivillous fibrin deposition,
large intervillous thrombi, and histiocytic intervilloitis.
One of the patients was a grand multiparous smoker with
a pregnancy complicated by early-onset fetal growth re-
striction that resulted in a 26-week delivery secondary to
abnormal fetal Doppler studies. Ultrasound examination
prior to delivery showed placental hypoechoic lacunae
and focal hyperechoic lesions suggestive of calcifica-
tions. These hyperechoic areas were attributed to large
intervillous thrombi on histologic examination of the
placenta.

In our case, ultrasound images of the placenta de-
monstrated diffuse punctate echogenic foci involving the
entire placenta which is an unusual finding and differs
from the aforementioned cases whose findings are seen
in many pregnancies even in the absence of COVID-19.
Furthermore, the placental echogenic foci in our case
were confirmed to be calcifications on pathology evalu-
ation rather than intervillous thrombi. Nevertheless, it
remains unclear whether these findings are caused by
SARS-CoV-2. Our patient had an uncomplicated preg-
nancy course and delivered a full-term, healthy, large for
gestational age, male infant.

In conclusion, placental calcifications may be associ-
ated with SAR-CoV-2 infection in early pregnancy.

References

Positive Mothers: Preliminary Findings. Pediatr Dev Pathol
2020;23:177-180.
2. Singh N, Buckley T, Shertz W. Placental Pathology in
COVID-19: Case Series in a Community Hospital Setting.
Cureus 2021;13:e12522.
logic evaluation of placentas after diagnosis of maternal
severe acute respiratory syndrome coronavirus 2 infection.
and SARS-Cov-2 infection: Diffuse placenta damage as-
associated to poor fetal outcome. Placenta 2021;112:97-104.
5. Dumont S, Balduyck J, Reynders M, Vanwijlenhem L,
Lefebvre. Acute SARS-CoV-2 alpha variant infection lead-
ung to placental insufficiency and fetal distress. J Med Virol
2022;94:1196-1200.
6. Varma VA, Kim KM. Placental calcification: ultrastructural
and X-ray microanalytic studies. Scan Electron Microsc
7. Bailao LA, Osborne NG, Rizzi MC, Bonilla-Musoles F,
Duarte G, Bailao TC. Ultrasound markers of fetal infection
8. McKenna D, Thamaratn S, Mahsud S, Dornan J. Ultra-
sonic evidence of placental calcification at 36 weeks’ ges-
tation: maternal and fetal outcomes. Acta Obstet Gynecol
9. Mirza FG, Ghulmiyyah LM, Tamim H, Makki M, Jeha D,
Nassar A. To ignore or not to ignore placental calcifications
on prenatal ultrasound: a systematic review and meta-anal-